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Darwinian Selection Leads to Gaia
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The Gaia hypothesis, in its strongest form, states that the Earth’s atmosphere, oceans, and
biota form a tightly coupled system that maintains environmental conditions close to
optimal for life. According to Gaia theory, optimal conditions are intrinsic, immutable
properties of living organisms. It is assumed that the role of Darwinian selection is to favor
organisms that act to stabilize environmental conditions at these optimal levels. In this paper,
an alternative form of Gaia theory based on more traditional Darwinian principles is
proposed. In the new approach, environmental regulation is a consequence of population
dynamics, not Darwinian selection. The role of selection is to favor organisms that are best
adapted to prevailing environmental conditions. However, the environment is not a static
backdrop for evolution, but is heavily influenced by the presence of living organisms. The
resulting co-evolving dynamical process eventually leads to the convergence of equilibrium
and optimal conditions. A simple Daisyworld model is used to illustrate this convergence
phenomenon. Sensitivity analysis of the Daisyworld model suggests that in stable ecosystems,
the convergence of equilibrium and optimal conditions is inevitable, provided there are no
externally driven shocks to the system. The end result may appear to be the product of
a cooperative venture, but is in fact the outcome of Darwinian selection acting upon “‘selfish”
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organisms.
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Introduction

It is widely observed that population growth is
greatly influenced by environmental conditions.
Some conditions, such as temperature, pH, and
salinity, are found at levels quite suitable for life,
and in some cases these levels are optimal, in
the sense that other levels would lead to lower
population growth rates. For example, there is
evidence that optimal (and survivable) tempera-
tures for extremophilic bacteria vary over a
wide range, but are usually tightly coupled to
those prevailing in their specific environments
(Madigan, 2000). Assuming a common origin
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for prokaryotes, a Darwinian explanation
for this phenomenon is that optimal conditions
are heritable traits, subject to variation and
selection, and evolution has favored species
that are best adapted to their respective
environments. According to Gaia theory (Love-
lock & Margulis, 1974), adaptation is not the
whole story. Natural selection also favors
organisms that have the ability to stabilize the
environment, and so maintain conditions that
are compatible with life. Evidence in support of
Gaia theory is summarized in James Lovelock’s
book, The Ages of Gaia (1995) and in a recent
review article appearing in Nature (Lenton,
1998).

© 2002 Elsevier Science Ltd. All rights reserved.
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One prerequisite for a self-regulating bio-
sphere is that organisms must be able to affect
their environment. The environment is undoub-
tedly influenced by the presence of life, if only
because living organisms consume nutrients and
expel waste materials on a large scale, and these
activities influence many environmental para-
meters (Holland, 1984). Gaia theory argues that
environmental regulation occurs because organ-
isms that alter the environment in a way that
is beneficial to themselves (and perhaps others)
are preferentially selected. There is no need to
postulate altruistic behavior on the part of
organisms, or to apply group selection theory
to explain self-regulation. In fact, Gaia research-
ers tend to shy away from group selection
arguments since they are open to criticism by
most biologists (e.g. see Dawkins, 1982). Instead,
Gaia theory has been constructed on a founda-
tion of individual selection. It is proposed that
organisms that act on the environment in a
beneficial way are preferentially rewarded over
those that hitch a “free ride”.

A prototype model, called Daisyworld (Wat-
son & Lovelock, 1983), has heavily influenced
the development of Gaia theory. In Daisyworld,
two competing species of daisies, one black, the
other white, affect the mean air temperature by
altering the albedo (reflectivity) of the planet.
Both species have optimal growth rates when the
temperature is 22.5°C, but white daisies cool
the air in their immediate vicinity, while black
daisies warm the air in their immediate vicinity.
The opposing tendencies of black and white
daisies give rise to a self-regulating thermostat
for the planet. For example, if the luminosity of
the sun increases, causing an increase in the
Earth’s temperature, white daisies are favored,
and the planet cools. Note that temperature
diffusion must be limited so as to allow selection
to occur at the individual level. If the tempera-
ture is uniform, regulation is absent. Daisyworld
models that allow for color mutation are even
more self-regulating (Stocker, 1995; Bloh et al.,
1997; Lenton, 1998).

There are two problems with the current
Daisyworld models. The first is that Darwinian
adaptation acts to destroy the property of
self-regulation (Saunders, 1994; Robertson &
Robinson, 1998). Consider again the example of

an increasing solar luminosity. In Robertson and
Robinson’s model, black mutant daisies are
introduced that can survive the warmer tem-
peratures, and the thermostat breaks down.
In fact, the mutants keep mutating, and air
temperature rises ever higher, resulting in a kind
of never-ending prisoner’s dilemma for the
planetf. The essence of the problem is that
cooperation and competition are not compatible
behaviors. Lenton & Lovelock (2000) have
pointed out that regulation can be reinstated in
“Darwinian Daisyworld” if constraints are
placed on temperature adaptation.

The second problem with the current models is
the need for a mechanism that selectively
rewards individuals that act to improve the
environment. In the real world, it is much more
likely that beneficial environmental conditions
will be enjoyed by all. In Daisyworld, rewards
are selective because atmospheric temperature
is non-uniform. Most real-world examples of
Gaian phenomena appear to be more global in
nature (Volk, 1998). For example, one candidate
for Gaian phenomena is the amplification of
rock weathering by plants and bacteria (Love-
lock & Watson, 1982; Schwartzman & Volk,
1989). Weathering is a long-term phenomenon
that removes CO, from the atmosphere, balan-
cing the input of CO, from metamorphic
processes and volcanism. CO, stabilization leads
to temperature regulation, because temperature
is linked to CO, via the greenhouse effect. So
plants and bacteria have an impact on atmo-
spheric temperature. It has been estimated by
Schwartzman & Volk (1989) that if there was no
amplification of rock weathering by the biota,
the Earth might be 30-45°C warmer than it is
today. A Daisyworld-like model for enhanced
rock weathering would have to include a
localized feedback mechanism that links surface
temperature with weathering activity for selec-
tive feedback to occur. Such a model would be

+ A similar plight awaits the planet if the overall growth
rate of black daisies is allowed to mutate upwards. Faster
growing black daisies will be selected, and the equilibrium
temperature point will move higher and higher, eventually
leading to sub-optimum conditions and low population
levels for all daisies. If the white daisies are also allowed
to mutate, an “arms race” between black and white daisies
may keep the planet in a well-regulated state.
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difficult to justify given the global nature of the
forces involved. It is more likely that there exists
a large-scale feedback mechanism that limits
weathering as a whole, and hence regulates
temperature. What is left unanswered is why
the resulting equilibrium temperature should
be anywhere close to optimal for plants and
bacteria.

Given the problems with existing models,
there is a need for a new theoretical approach.
In the present article, a new formulation of Gaia
theory is presented, based on Darwinian selec-
tion. There are no localized reward mechanisms.
Instead, optimal conditions are heritable traits,
subject to variation and selection, and evolution
favors species that are best adapted to their
environment. At the same time, living organisms
have a profound and widespread affect on the
environment. The environment is in some sense a
moving target for natural selection, and the main
goal of the present study is to explain why
optimal conditions should converge to prevail-
ing environmental conditions. A mechanism is
described which allows convergence to take
place due to the stabilizing influence of popula-
tion dynamics on the environment.

Adaptive Gaia

A recent review article distinguished several
types of feedback mechanisms that could reg-
ulate the environment (Lenton, 1998). One type,
called feedback on selection, sees the environ-
ment as a local extension of the organism. The
original Daisyworld model (Watson & Lovelock,
1983) was constructed based on this type of
feedback. The other type, which is the focus of
this paper, is called feedback on growth, and is
driven by population dynamics. Finite resources
serve to regulate populations, or equivalently,
living organisms regulate the environment,
through their plundering of available resources
(Tyrrell, 2002). Environmental characteristics
that are affected by some species through this
type of population dynamics are stable under
perturbations of that species’ population. For
example, plants and CO, are involved in a short-
term negative feedback cycle that limits both the
amount of plant material in the biosphere, and
the amount of CO, in the atmosphere (Kump

et al., 1999). Another example is the remarkable
stability of nutrient ratios in the open ocean,
which are regulated by the dynamics of phyto-
plankton and bacterial growth (Redfield, 1958;
Lenton & Watson, 2000; Tyrrell, 1999). Envi-
ronmental regulation is thus an emergent pro-
perty of population dynamics, not an outcome
of Darwinian selection (Wilkinson, 1999, 2002).

A theoretical argument shows how the com-
bination of population dynamics and Darwinian
selection can lead to organisms with optimal
conditions (preferred habitats) coincident with
environmental conditions. Environmental char-
acteristics that are candidates for being optimal
include temperature, salinity, and pH, as well as
the concentrations of various substances, not
including those for which demand is infinite (e.g.
food or limiting nutrients). Consider the case of
a bacterial species having a population growth
rate that is dependent on temperature in a bell-
shaped manner, such that the maximum growth
rate occurs at some optimal temperature for the
species. If optimal temperature is a heritable
trait, subject to variation and selection, then any
strain of bacteria having optimal temperature
closer to the actual temperature will be selected.
If the actual temperature is unaffected by
bacterial populations, then according to the
usual Darwinian argument, the optimal tem-
perature will eventually converge on the actual
temperature. On the other hand, if the bacterial
population affects temperature, that dependence
will either be related to some effect of bacterial
metabolism, or will be related to levels of
nutrients or waste products, both of which are
dependent on bacterial population levels. In
either case, after selection occurs, there will
be a slightly higher level of population, a slight
depletion of resources, and a corresponding shift
in temperature. As evolution proceeds over time,
more and more adaptation will be required to
produce smaller and smaller increases in popula-
tion, because the bacterial nutrients will become
more and more depleted, limiting the ability of
bacteria to expand their numbers. Hence there
will be smaller changes in temperature as time
goes by. So while the optimal conditions for
organisms may evolve at any rate, subject to the
dynamics of variation and selection, the rate
of change of environmental conditions should



38 M. STALEY

decrease over time, eventually leading to a
convergence of optimal and environmental
conditions, assuming no external forcing. The
resulting environmental conditions will also be
stable under perturbations of population. In
summary, Darwinian selection should lead to
organisms that are well adapted to their environ-
ment, even when environmental conditions are
affected by those very same organisms.

A Daisyworld Model

It is useful at this stage to present a new
version of Daisyworld, similar to the original
version (Watson & Lovelock, 1983), but which
illustrates the convergence of optimal conditions
and equilibrium environmental conditions. The
Appendix contains a more general mathematical
discussion. In the new Daisyworld model there
are only white daisies. White daisies reflect
sunlight, limiting the amount of energy hitting
the planetary surface. In the original Daisyworld
model, there was competition between daisies for
land. In this new model, the daisies compete
for energy, which is treated as the limiting raw
material for growth. As the white daisies
proliferate, more and more sunlight is reflected
back to space, leaving less energy for new
daisies. The resulting population limit represents
an equilibrium point for the system. The
growth rate of daisies is a function of tempera-
ture, having the same form as the original
model, but now temperature is uniform over
the surface. Since every plant experiences the
same temperature, there are no selective pres-
sures favoring plants that alter the environment
for their own benefit. Note that in a low
temperature world it would be advantageous
for daisies if their color could change to black,
because black daisies would warm the planet.
But since temperature is uniform, there are no
selective pressures favoring black mutants.
Although color mutation might lead to a mix
of colored daisies through stochastic effects, the
outcome is arbitrary. The present model has
been kept simple by not allowing any color
mutation.

White daisies have an assumed albedo (or
reflectivity) of 0.75, whereas the ground is
assumed to be dark, with an albedo of 0.25.

The albedo of the planet, A4, is then given by
A(x) = Ay(1 — x) + Agx, (1)

where A4,=10.25 A4;=0.75, and x is the
proportion of the planet covered by daisies.
The energy flux reaching the surface of Daisy-
world is

E(x) = SL(1 — A(x)), (2)

where L is a dimensionless luminosity parameter
for the sun (equal to 1 on Earth at the present
time), and S=917Wm 2 is the solar flux
constant. The planet is assumed to radiate heat
according to the Stefan—Boltzman law. Balan-
cing incoming and outgoing energy, we obtain
an expression for temperature:

o(T + 273)* = E(x) (3)

with  Stefan’s  constant (o) = 5.67 x 1078
Wm 2K Population growth and decay are
governed by the following equation:

X

L= 0 =KEXB(T) — 7, “4)
where k is a constant (to be determined), y =
0.3yr~! is the death rate, and kE(x)B(T) is the
overall birth rate. (7' is a parabolic function of
temperature:

r- T°>2. 5)

pn=1- (45

The parameter 4 is a measure of the width of the
growth response as a function of temperature
(here A =17.5°C), and Ty is the optimum
temperature for growth (preferred habitat). We
are assuming that there are no time lags between
the different processes. In the present model,
evolution occurs through variation in T,. An
obvious extension of the model would be to
allow variation in 4, but 4 has been kept constant
for now.

The dynamical equation (4) contains a re-
source factor, kE(x), which replaces the 1 — x
factor in the original model (Watson & Lovelock,
1983). Energy flux is now treated as the limiting
resource, which is regulated by daisies, while
temperature is the secondary characteristic,
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Fic. 1. Homeostasis on Daisyworld. (a) Temperature is well regulated as long as solar luminosity lies between 0.6 and
1.9. When luminosity is lower than 0.6, the presence of daisies cause the temperature to fall below the threshold for growth.
When the luminosity rises above 1.9, daisies have already saturated the planet, and there is no room for more daisies to
reflect the additional sunlight. Hence the temperature rises above the optimum 22.5°C, leading to a reduction in population,
which leads to a warmer planet, quickly leading to the extinction of daisies. (b) The population of Daisies increases in
tandem with increases in luminosity, so as to maintain net energy flow to the planet constant.

determined by energy flux. The parameter “k”
represents the productivity of daisies, i.e. their
ability to translate sunlight into population
growth. The higher the value of “k”, the higher
the rate of population growth for a given amount
of incident energy E(x). It should be noted that
all simple models of population dynamics as well
as more sophisticated models that utilize the
Michaelis—Menten formula contain such a para-
meter. The left-hand side of equation (4) has the
units of yr~', which are matched by the units of
kS on the right-hand side. The original Daisy-
world model (Watson & Lovelock, 1983) im-
plicitly contains a parameter having the units of
yr~' in the definition of f, although its value
happens to be equal to 1, whereas in the present
model f is kept dimensionless. We can arbitrarily
choose a value of k£ by forcing the equilibrium
solution of eqn (4) to occur at a temperature of
22.5°C

when L =1 and T = 22.5°C (k = 6.94 x 10~*
W 'm?yr!). This equilibrium point occurs
when x = 0.56, the planectary albedo is 0.53,
and kS = 0.636 yr!. It is easily verified that the
equilibrium point, xr, satisfies the following
stability criteria:

0G(x)

<0. (6)

X=Xy

G(xr) =0, and

Before delving into the dynamics of Darwinian
selection, it is instructive to investigate the

homeostatic properties of this model. It turns
out that planetary temperature is regulated over
a wide range of solar luminosities. If we slowly
increase luminosity, and allow the system to
come to equilibrium at each step, the daisy
population grows just enough to reflect the excess
energy, and so maintain the temperature at
22.5°C. As shown in Fig. 1, the equilibrium
temperature is independent of L over a large
range. Analytically:

Toguit = (ky—a)l/ o %

It is possible that a system obeying eqns (1)—(5)
could exist with any value of 7. For example,
since daisies are the only life form on Daisy-
world, they must have originated at some time on
a dead planet. It is reasonable to assume that the
optimal temperature for growth at that time was
the prevailing dead-planet temperature. At a
luminosity of 1, the dead-planet temperature is
59°C and if we set Ty = 59°C and L = 1 in eqns
(1)—(5), the equilibrium temperature turns out to
be 49°C, which is below optimum for these
proto-daisies.

The unique characteristic of the new Daisy-
world model is that Darwinian selection inevi-
tably drives the evolution of optimal and
equilibrium temperatures down to 22.5°C. Con-
sider what happens if we allow mutation of T.
Equations (4) and (5) must be replaced by the
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following system:

~ = KEGe+ X)BT) 5,
2
pn=1-(F57) (sa)
and
Y )
= KEG X)RT)
N\ 2
po=1-(F0) . e

where x, f(T), and T, refer to the original
population, while X, f(T), and T} refer to the
mutants. 7" is now a function of x + x’ through
its dependence on E(x + x’) in equation (3).
There are no fixed-point solutions of eqns (8a)
and (8b) that allow for the coexistence of both
types of daisies, so one of the types must be
driven to extinction. If T, = 59°C and T} is
greater than Ty, then B'(T)<p(T) for all values
of T less than T), including at the equilibrium
temperature of 49°C. The only stable solution of
eqns (8a) and (8b) is X’ = 0, hence these mutants
cannot survive. However, if 7} is less than Ty,
B(T)> B(T) at the equilibrium temperature, and
the mutants take over. These higher growth
mutants cause the albedo to increase, further
cooling the planet. If variation and selection is
allowed to continue, both the optimum tempera-
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ture Ty, and the equilibrium temperature con-
tinue to drop, until they are both equal to
22.5°C, after which there is no further evolution
of temperature. Fig. 2(a) shows the time course
of the optimal and equilibrium temperatures,
assuming for the sake of argument that the
optimal temperature mutates at a rate of 1°C per
million years.

Sensitivity Analysis

The final point of convergence depends on the
parameters of the dynamical system. In Daisy-
world, the key determinant of the final tempera-
ture according to eqn (7) is k, which represents
the productivity of daisies. We deliberately chose
a value of k that led to a final temperature of
22.5°C. Other values of k lead to different final
temperatures. Table 1 lists the outcome of
several simulation runs, and shows how the final
condition of the planet depends on k (kS for
convenience), L, and the initial optimal tem-
perature of daisies. Note that the final tempera-
ture is independent of L for a given value of k.
For example, at kS = 0.636 (the value used in
the previous section), if the luminosity is set to
1.2, the initial dead-planet temperature becomes
74.3°C, but the end-point temperature is still
22.5°C. Increasing the luminosity leads to an
increase in final land coverage and albedo, which
compensates for the added energy. In part (b) of
Table 1, the ground albedo is raised to 0.45 and
the daisy albedo is lowered to 0.55. The line in
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FiG. 2. Convergence of optimality and equilibrium. (a) At first there is a wide separation between the optimal and
equilibrium temperatures. But natural selection favors variants with optimal points closer to the equilibrium point. As
evolution proceeds, both points shift in value, but eventually, there is convergence. Note that in the real world, convergence
may occur gradually as shown here, or in jumps due to evolutionary innovations. (b) The top line shows the equilibrium
level of ground coverage (stable attractor). The lower two lines show the threshold for instability for two different 4
parameters. If the population drops below these lines, regulation breaks down, and the population of daisies quickly goes to
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TABLE 1
Sensitivity of final convergence conditions to selected parameter values and initial conditions. (a) Albedo
values used in the initial Daisyworld model. (b) A smaller difference in albedo between ground and daisies
leads to a smaller acceptable range of parameters

Initial Daisy optimal temperature (°C) Final convergence conditions

KS (yr ") L Minimum Dead planet Maximum Temperature (°C) Land coverage  Albedo
(a) Ground albedo = 0.25, Daisy albedo = 0.75

0.3 14 842 88.0 91.8 83.6 0.07 0.29
0.4 1.0 58.9 58.9 58.9 58.8 0.00 0.25
0.4 1.2 672 74.3 81.5 58.9 0.25 0.37
0.4 14 786 88.0 97.3 58.9 0.43 0.46
0.5 0.8 409 40.9 40.9 40.8 0.00 0.25
0.5 1.0 51.0 58.9 66.7 40.9 0.30 0.40
0.5 1.2 642 74.3 84.4 40.9 0.50 0.50
0.5 1.4 765 88.0 99.4 40.9 0.64 0.57
0.636 0.8 32.8 40.9 49.0 22.5 0.32 0.41
0.636 1.0 482 58.9 69.5 22.5 0.56 0.53
0.636 1.2 623 74.3 86.4 22.5 0.71 0.61
0.636 1.4 750 88.0 101.0 22.5 0.83 0.66
0.7 0.6 15.3 19.1 22.9 15.5 0.07 0.29
0.7 0.8 31.5 40.9 50.2 15.5 0.43 0.46
0.7 1.0 474 58.9 70.3 15.5 0.64 0.57
0.7 1.2 617 74.3 87.0 15.5 0.79 0.64
0.7 1.4 745 88.0 101.5 15.5 0.89 0.69
0.8 0.6 11.9 19.1 26.2 6.1 0.25 0.37
0.8 0.8 30.1 40.9 51.6 6.1 0.56 0.53
0.8 1.0 46.5 58.9 71.2 6.1 0.75 0.62
0.8 1.2 61.0 74.3 87.7 6.1 0.87 0.69
0.8 1.4 740 88.0 102.0 6.1 0.96 0.73
(b) Ground albedo = 0.45, Daisy albedo = 0.55

0.4 14 582 61.1 63.9 58.9 0.14 0.46
0.5 1.2 432 48.4 53.7 40.9 0.50 0.50
0.636 1.0 275 34.1 40.7 22.5 0.79 0.53
0.7 0.8 14.6 17.4 20.3 15.5 0.14 0.46
0.8 0.8 10.7 17.4 24.2 6.1 0.81 0.53

bold contains the same values of kS and L that  convergence [where f(7T) =1 also]. The lower

were used in the previous section, and the final
temperature and albedo are the same as before,
but the required land coverage is greater (0.79
instead of 0.56).

Not all values of &S and L lead to stability and
convergence. If either of these two quantities is
too low, then even if f(T) =1 the growth rate
may lie below threshold. The higher the ground
albedo, the higher the required values of &S and/
or L, because there is less net energy available to
the daisies. On the other hand, if &S or L is too
large, the growth rate may be so high that the
planet becomes saturated with daisies (x = 1)
before equilibrium is achieved at the point of

the daisy albedo, the lower the maximum
allowed values for k&S and L, because low-albedo
daisies require more land coverage in order to
come to equilibrium. In a realistic model, other
constraints on growth would probably cause the
population to come to equilibrium before
saturation of land is attained. The following
lower and upper bounds on kSL are easily
derived by setting eqn (4) to zero (with f(T) = 1)
at x = 0 and 1, respectively.

v

L
l—Ag<kS <

Y
—r 9)
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where A4, is the ground albedo (0.25 in the initial
discussion), and A, is the daisy albedo (0.75
in the initial discussion). Equation (9) shows why
there are less possible combinations of kS and L
in part (b) of Table 1 than in part (a) because of
the smaller difference between 4, and A,.

Since the parameter k is a characteristic of
daisies, it is possible that it could itself be subject
to variation and selection pressure. In any
competition between daisies, the species having
the largest value of k& will win, and so we expect
that & will increase over time. Consider the case
where the optimal and equilibrium temperatures
have already converged, and some variant arises
which has a larger value of k than the prevailing
population. This variant will drive the other
daisies to extinction, and cause the equilibrium
temperature to drop. If a new variant now arises
having the same value of k& but a lower optimal
temperature, it will be selected. Eventually, such
rounds of variation and selection will once again
lead to the convergence of equilibrium and
optimal temperatures.

The third and fifth columns of Table 1 list the
minimum and maximum values of initial optimal
temperature of daisies. If the initial optimal
temperature falls outside this range, the daisies
cannot get off the ground because their growth
rate is below the threshold of growth, due to the
influence of the B(T) function [see eqn (5)].
However, it is reasonable to expect that the
initial optimal temperature would be equal to the
dead-planet temperature, which is halfway be-
tween the minimum and maximum optimal
temperatures. Note that the higher the 4 value,
the wider the range of allowed initial optimal
temperatures.

The parameter A does not have any affect on
the temperature of convergence, but it does have
a strong influence on the stability properties of
Daisyworld. As already mentioned, the system
is very stable under perturbations of luminosity
over a wide range. However, the same cannot be
said for perturbations of population. The system
can handle any increase in population, since the
white daisies will reflect more light and hence
lower the growth rate. But the system is at risk
whenever there is a reduction of population due
to some external forcing. This vulnerability
gets worse over time, as the daisies adapt to an

environment that is dependent on the existing
population of daisies. Early in the life of the
planet, daisies are able to live in the hot
environment of a near-dead planet. But as the
planet cools, the daisies gradually ““forget” how
to live on a dead planet. If there is some
externally caused drop in population, it is
possible that the temperature might rise to such
an extent that a catastrophic positive feedback
scenario occurs, leading to the extinction of all
life. We can compute the threshold for cata-
strophe by finding the unstable fixed point x,
where

8G(x)

G(xs) =0 and —~2
(r) an ox

|y = x>0, (10)
Note that the stable point occurs at a larger
population level than the unstable point, so the
only region where instability can set in is when
the population is below the unstable fixed point.
Fig. 2(b) shows the evolution of population,
coinciding with the evolution of temperature
shown in Fig. 2(a). Included in Fig. 2(b) are two
catastrophe threshold lines, one corresponding
to A =17.5°C (the present model), and other
corresponding to 4 = 35°C for comparison. It is
possible that in a fully stochastic model, where 4
is subject to variation and selection, 4 might
evolve such that the population is immune to
moderate fluctuations in population. Then the
remaining risk would be from an unusual event
that kills off a larger portion of the population.

As long as kS and L satisfy eqn (9), and as
long as the initial optimal temperature allows for
growth to get started, and there are no sudden
reductions of population due to external causes,
the system will come to equilibrium and the
optimal temperature will converge to the equili-
brium temperature. In other words, as long as
the system can come to equilibrium, Darwinian
selection will lead to the convergence of optimal
and equilibrium temperatures.

Discussion

The Daisyworld model presented in the
previous sections is simple enough that one is
led to speculate that Gaian phenomena are
ubiquitous on Earth. One of the prerequisites
for Darwinian evolution is that there are
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constraints on population growth. These con-
straints must be enforced by regulatory systems
operating on the organisms and their environ-
ment. The Earth system probably contains many
such regulatory systems, some of which are
driven by resource limitations, others by envir-
onmental degradation effects due to population
pressures (like the white daisies blocking the
sun’s energy). Regulation implies the existence of
stable fixed points. One of the characteristics of
systems exhibiting stable fixed points is that if
there is any variation in growth rate, the fastest
growing species will drive all others to extinc-
tion. Or in other words, if several species share
an ecological niche, the one with the highest
reproductive success will be the one to survive in
the long run. Hence regulation leads to competi-
tion, and organisms that are best adapted to
equilibrium conditions will be selected.

One proposed Gaian system that is similar to
Daisyworld links marine plankton, sulphate
aerosols, cloud formation and climate (Charlson
et al., 1987). The Earth’s albedo is largely
determined by the amount of cloud cover (clouds
have high albedo), and a large percentage of
clouds are located over the oceans, which have
low albedo. There is evidence to suggest that
marine plankton affect the amount of cloud
cover over the oceans, through the release and
action of dimethyl sulfide (DMS), and hence act
like white daisies. It may also be the case that
dimethyl sulfide emissions are positively corre-
lated with sunlight intensity (Bates et al., 1987;
Simo & Pedros-Alio, 1999; Simo, 2001), in which
case the present Daisyworld model should be
applicable. Marine plankton may have first
appeared when the Earth’s temperature was
higher than it is now, and they would have
contributed to a cooling of the Earth, through
the effect of DMS-induced cloud formation.
This cooling effect would have occurred in
conjunction with other environmental effects of
marine plankton. There would have been selec-
tive pressure on subsequent generations of
plankton to adapt to the cooler temperatures,
leading to higher levels of plankton, and even
cooler temperatures. One prediction of this
scenario is that the current optimal temperature
for plankton growth should either coincide with
the current prevailing temperature, or lic at a

higher temperature, in which case the evolution
of optimal temperature is ongoing.

Another candidate Gaia phenomenon is the
amplification of rock weathering by plants and
bacteria (Lovelock & Watson, 1982; Schwartz-
man & Volk, 1989). In this case, the regulatory
mechanism is most likely related to a limited
supply of elemental nutrients such as phos-
phorus (Lenton, 1998). A side effect of popula-
tion growth is the enhancement of silicate
weathering, which removes CO, from the atmo-
sphere, cooling the Earth. One can imagine an
evolutionary scenario much like that discussed in
relation to marine plankton, except that in this
case, enhanced rock weathering would lead to
the cooler temperatures. In this scenario, early
forms of bacteria thrive in a high-temperature
environment. But as their numbers increase,
atmospheric temperature is lowered due to
weathering activity. The drop in temperature
leads to sub-optimal growth conditions, limiting
the spread of bacteria. After some time, strains
of bacteria form that are more suited to the
lower temperatures. The new strains beat out
the older bacteria in the race for nutrients. The
equilibrium population rises slightly, leading to
further enhancement of rock weathering, and
cooler temperatures.

Adaptive Gaia theory may serve as a good
framework for understanding environmental
issues. One of the major preoccupations of
environmental researchers is to determine if the
biosphere is at risk of self-destruction caused by
human activity. The central theme of this paper
is that organisms are adapted to survive in an
environment that is heavily influenced by life
itself. Although the Earth system is self-regulat-
ing to a large extent, organisms are still
vulnerable to changing conditions because they
are optimized to survive best near stable points.
As Fig. 2(b) warns, the more time that evolution
has to operate, the more vulnerable life is to
shocks. If the Earth system is perturbed too
heavily, negative feedback may turn into positive
feedback, and the system will break down.

In conclusion, there is theoretical justification
for believing that environmental conditions on
Earth are maintained close to optimal for life by
negative-feedback processes involving life itself.
The original Gaia hypothesis suggested that



44 M. STALEY

optimal conditions for life are pre-determined,
and Darwinian selection favors organisms that
help maintain those conditions. In this paper, an
alternative explanation for Gaian phenomena
has been presented, based on more traditional
Darwinian principles. In the new approach, self-
regulation is a natural outcome of population
dynamics, and is a prerequisite for Darwinian
selection, not the other way around. The role of
Darwinian selection is to favor organisms that
are most capable of surviving the conditions on
Earth. But the Earth is strongly influenced by the
presence of life. Hence life and its environment
co-evolve until the optimal conditions for life
coincide with equilibrium conditions.

The author thanks the following people for their
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Jennifer Robinson, Rafel Simo, Douglas Staley,
Kathy Staley, Toby Tyrrell, Nanne Weber, and
David Wilkinson. The author also thanks John Lee
for initiating the investigation.
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APPENDIX

The purpose of this Appendix is to illustrate
the convergence of optimal and equilibrium
environmental conditions in multi-species eco-
systems, and to determine what restrictions are
required of the dynamics. As will be shown,
all that is required is that the dynamics be
asymptotically stable, and that equilibrium
properties be dominated by resource constraints.
Consider an N species system interacting with M
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varieties of non-biological materials. All species
cooperate in a supply chain (e.g. food web), or
other non-competitive relationship. For exam-
ple, the system might consist of two types of
organisms, one animal and the other plant, and
two gases, carbon dioxide and oxygen. The
dynamics can be written as follows:

? = Gl'(/lia X, m) m/ = F}(X’ m)’ (Al)

i

where m is the vector of material quantities
(j =1...M), x is the population vector of species
(i=1...N), and 4; is a convenient parameter
representing the individual fitness characteristics
of each species i. Each species follows Malthu-
sian growth, so G; is finite and non-zero at x; =
0. Since the non-biological materials do not
replicate, they follow non-Malthusian dynamics.
A fixed point (Xy,my) is characterized by
Gi(4i,xr,my) =0, and Fj(x,m) =0 for all i,j.
According to perturbation analysis, the fixed
point is stable if all eigenvalues of the Jacobian
matrix of eqn (A.l) have negative or zero
real parts. If any eigenvalue has zero real
part, then either there is some linear combina-
tion of population and material that is undeter-
mined, or the system exhibits permanent
oscillations, as in the Lotka—Volterra predator—
prey system. The present analysis only applies to
systems that are asymptotically stable, 1i.e.
all eigenvalues have negative real parts. If it
happens that a particular system of interest has
eigenvalues with zero real parts, the following
analysis may still be applied to the subspace of
(x, m) that satisfies the conditions of asymptotic
stability.

Now consider the situation where a variant of
species k, labeled k', arises in direct competition
with the original species k. The variants differ
from the original organisms by having a
different value of ;. The biological part of
system (A.1) must then be replaced with:

X; ,
ol Gi(Ai, {x1}, Xk + X, m),

i

i,l1#k, (A2.1)

% = Gr(Aie, {x1}, Xk + xpom),  [#k, (A2.2)
k

./
% = Ge(A {xi}, X + xp,m), [k (A2.3)
k

At equilibrium, all time derivatives are zero, but
in general, the right-hand sides of eqns (A.2.2)
and (A.2.3) cannot both be zero, so either x; =
0, or xj = 0 (survival of the fittest). The species
with the largest Gy wins, as can be verified using
perturbation analysis. Let us assume that the
variant win the contest. At first, the right-hand
side of eqn (A.2.3) will be greater than zero. But
since the system is asymptotically stable, the
population levels of all species will adjust until
G, = 0 once again (after xi has diminished to
zero). We are assuming that there is no inter-
mediate point along the path taken by x at which
the original population of species k can
coexist with the variant population. The total
change in Gy will be zero by the time the system
returns to equilibrium. So defining 2 = A +
d/x, we have

O—de—@dik aﬂd)@—%—

= dAms
EYR - ox; . "

ij
(A.3)

But the first term in eqn (A.3) is positive;
otherwise the variants would not survive. Hence,
the amount that the population vector (dx, dm)
changes during the process of selection for
species k satisfies the following inequality:

aGk oGy
Z o, 4 oy A1<0- (A
Now consider a new version of eqn (A.1) that
explicitly separates the contributions of indivi-

dual environmental fitness, and external resource
constraints:

%: Gilfi(x, m), ri(x,m)], ri; = Fj(x, m), (A.5)

where

fi(xa m) = €(X, m) - (6’0)1'-

fi(x, m) is the individual fitness function, which
is in turn expressed in terms of the difference
between some environmental parameter, e(x, m),
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(such as temperature) and the optimal environ-
ment for species i (ey); .(ep); replaces the
parameter /4; in eqn (A.l). The functional
dependence of G; on f; is assumed to be bell-
shaped, such that the closer (ep); is to e, the
larger G; becomes. ri(x, m) is the resource
contribution to growth, and dominates the
equilibrium properties of the system.

In order for the convergence of equilibrium
and optimality to occur, we must assume
that resource limitations regulate the popu-
lation of organisms no matter what their indi-
vidual growth characteristics are. That is,
condition (A.4) applies to the resource
part of the dynamics during the process of
selection:

oGy, Ork ory
— (Y FFdx —“dm; | <0. (A
o (Z 3y, i ; o) dm]> <0.  (A.6)

In practical application, eqn (A.6) must be
verified using the equations of the system
under study.We can now derive a condition
on the evolution e, in terms of d(ey), by noting

that de de
= E —dx; E —dm;, (A.
dey o dx; + 3 jdm] (A.7)

where (dx, dm) is the change in quantities during
selection, after equilibrium has been restored.
Applying conditions (A.3) and (A.6) to eqn
(A.5), and using the expression for des in

eqn (A.7), we obtain the central result:

0Gy
e (d(eo), — dey)>0.

This condition allows us to conclude that
equilibrium and optimality will converge during
the process of variation and selection. To show
this, it is useful to define the parameter changes
in terms of their end points: d(ep); = (o)), —
(eo)r, and des = e} — e, and assume that all
environmental quantities are positive. There are
three cases to consider:

Case 1: (eg), <er. In this case, d(e)), must be
positive to be selected, since that will take (e);
closer to e, and the growth rate of the variant
will be larger than that of the original species k.
Also, 0Gy /d(ep), will be positive, and so d(ep); —
dey >0, and hence ¢} — (), <er — (€0

Case 2: (eg),>er. In this case, d(ep), is
negative, and 0Gy/d(ep); s negative, so d(ep); —
dey <0, hence (eg);, — e, <(e); — er.

Case 3: (eg), = es. This is the end point of
evolution as far as the present analysis is
concerned. Any variant of species k with
different (ep),will not be selected because its
growth rate will be less than that of the
prevailing population.

The above analysis applies to all species, so it
is expected that the in the long run, (ep); will
approach ey for all i.

(A.8)
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