#### GIS resources



#### Local web maps

- http://r.bournemouth.ac.uk:3838/Ecoregions2/
- http://r.bournemouth.ac.uk:3838/Fires/
- http://r.bournemouth.ac.uk:3838/climateexplorer /

#### Global forest watch site

#### http://www.globalforestwatch.org/map



#### GIS data types

- Hansen's map consists of large raster tiles
- Ecoregions and protected areas are vector polygons
- Fire occurrences are point vector data

## Challenges in processing raster data

- Large files
- Landsat for UK consists of 200 billion pixels
- Image processing and classification well established. Use very efficient algorithms written in low level coding languages
- Multiple iterative operations that calculate bespoke raster statistics can be very time consuming

## Pyramids and zooming

- Large raster files cannot be seen on screen with a fine grain resolution
- Pyramids allow fast panning and zooming by using fewer pixels
- Processing or downloading the whole image can be much slower than might be expected

#### Geoserver

- Geoserver is used to "serve" data over the web
- Can be linked to many different GIS programs for data processing
- QGIS and ArcGIS are desktop GIS
- Data processing takes place locally
- Download the data first then save a copy to local disk for processing



#### Some protocols

- Web Map Server WMS
  - Displays a picture of the data. Fast
- Web Feature Server WFS
  - Provides the features (attributes) of vector layers.
    Can be slow if vector layer is large and complex
- Web Coverage Server WCS
  - Provides underlying raster data. Slow, as large amounts of data are being downloaded

#### Geoserver usage

- WMS is often used in web maps
- Data filtered and limited to speed up display
- WFS and WCS are **not** usually exposed directly as this can slow down server
- They are usually queried through a pre filter on the web map in order to limit scope
- If used for research in a desktop GIS it must be used carefully.

## QGIS browser panel



## QGIS usage

 Always zoom to limited area before adding WMS-.

| Name      | AGWN      | MS                                                 |
|-----------|-----------|----------------------------------------------------|
| URL       | http:/    | //r.bournemouth.ac.uk:8083/AG/wms?                 |
| Authort   | ication   | Configurations                                     |
| Authent   | icación   | Comigardations                                     |
| If the se | ervice re | equires basic authentication, enter a user name ar |

#### WFS connection

| lame  | AGWFS                                                        |
|-------|--------------------------------------------------------------|
| RL    | http://r.bournemouth.ac.uk:8083/AG/wfs?                      |
| uther | ntication Configurations                                     |
|       |                                                              |
|       | service requires basic authentication, enter a user name and |
|       | nal password                                                 |

#### Adding a WFS layer

- Always use the full menu dialogue
- Always check that you are zoomed to a small area
- Don't accidentally try to load the whole layer

## Adding WFS from layer menu



## Only request features overlapping current view



#### Example for Columbia



#### Example for Columbia

- First select the area for which you want to download the data
- You can load the tnc\_eco WMS layer for the whole world quite quickly and use this to select the area.
- The smaller the area, the quicker the files will load and the smaller the saved files will be

#### Zoom to area



#### Download WFS layers

- Download the WFS polygons for the World Data Base of protected areas and the TNC ecoregions
- Use the layer menu at the top of the window
- Select add layer, then add WFS layer
- Press connect to connect to the server or add the wfs connection if not yet added
- http://r.bournemouth.ac.uk:8083/AG/wfs?

## Select the layers to download



## Select the layers to download

- Make sure that you tick only request features overlapping current extent!
- The fires layer is the slowest to load as there are so many points to filter. You may want to miss this first

## Select the layers to download



## This will add the fires. Be prepared to wait



#### Data loaded



#### Go to layers panel



#### Right click a layer to save locally



## Save as shapefile locally



#### Add file name



#### Reminder of WFS steps

- Zoom to the area you are interested in
- Connect to WFS using menu at the top of the window.
- Select the layers, making sure to only request data for the visible area
- Save the results locally as shapefiles for your project
- You can now open the files in ArcGIS if you want to process them using Arc

#### Downloading Hansen's data

- There are two WCS coverages
- Forest2000 and Loss
- I have not included gain, as this layer is difficult to interpret and not relevant to the assignment
- These are large files at this resolution
- The WCS connection will only download the visible area by default, so this is easy

#### Downloading Hansen's data

- Connect to WCS
- http://r.bournemouth.ac.uk:8083/AG/wcs?

## Click layer to load



## Go to layers panel



# Save as Geotiff locally Use Map View Extent



#### Steps to save raster layers

- Connect to WCS service
- Download forest2000 and loss (may take some time)
- Right click layer to save locally
- Choose mapview extent
- Save to local folder
- Files will be large. We will see how to simplify processing next week

#### Summary

- You should have now compiled the raw data for your region locally
- If you already know some GIS techniques you may be ready to work with the data
- If not, additional help will be provided in the next practical sessions