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Abstract

Plants are a hyperdiverse clade that plays a key role in maintaining ecological and evolutionary
processes as well as human livelihoods. Biases, gaps and uncertainties in plant occurrence infor-
mation remain a central problem in ecology and conservation, but these limitations remain largely
unassessed globally. In this synthesis, we propose a conceptual framework for analysing gaps in
information coverage, information uncertainties and biases in these metrics along taxonomic, geo-
graphical and temporal dimensions, and apply it to all c. 370 000 species of land plants. To this
end, we integrated 120 million point-occurrence records with independent databases on plant tax-
onomy, distributions and conservation status. We find that different data limitations are prevalent
in each dimension. Different metrics of information coverage and uncertainty are largely uncorre-
lated, and reducing taxonomic, spatial or temporal uncertainty by filtering out records would usu-
ally come at great costs to coverage. In light of these multidimensional data limitations, we
discuss prospects for global plant ecological and biogeographical research, monitoring and conser-
vation and outline critical next steps towards more effective information usage and mobilisation.
Our study provides an empirical baseline for evaluating and improving global floristic knowledge,
along with a conceptual framework that can be applied to study other hyperdiverse clades.
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INTRODUCTION

Land plants (subkingdom Embryophyta, hereafter ‘plants’)
are a hyperdiverse group of organisms and the principal pro-
viders of biochemical energy and habitat structure in most
terrestrial ecosystems. Geographical distributions of plant
species determine the spatio-temporal setting for evolutionary
and ecological processes (Wright & Samways 1998; Kissling
et al. 2008), and of the ecosystem functions and services
upon which most other species, including humans, rely (Isbell
et al. 2011; Gamfeldt et al. 2013). Advances in ecological
theory and effective management of natural resources thus
rest to a great extent on detailed information about spatio-
temporal occurrences of plant species. For instance,
improved occurrence information is presupposed by several
international policy targets in the framework of the UN
Convention on Biological Diversity’s Global Strategy for
Plant Conservation (GSPC; www.cbd.int/gspc/targets.shtml;
Paton 2009). To date, however, detailed distribution data sets
typically required in ecological research and conservation

only exist for a few plant groups and geographical regions
(Riddle et al. 2011), a phenomenon termed the Wallacean
shortfall (Lomolino 2004).
Most available data sets on plant distributions, including

checklists, atlas data and range maps, are ultimately based on
point-occurrence records. Such records represent the primary
information on the three basic dimensions that characterise
species distributions – taxonomy, space and time – as they
provide direct evidence that a particular species occurred at a
particular location at a particular point in time (Sober�on &
Peterson 2004). Over the last two decades, millions of digital
plant records from herbarium specimens, field observations
and other sources have been mobilised via international data-
sharing networks, most notably that of the Global Biodiver-
sity Information Facility (GBIF; Edwards 2000). In contrast
to un-mobilised datasets or expert knowledge, these mobilised
records represent the largest share of information that is both
digital and easily accessible in a standard format (hereafter
referred to as digital accessible information (DAI); originally
referred to as digital accessible knowledge; Sousa-Baena et al.
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2014). Recent advances in unifying global plant taxonomic
information (The Plant List, TPL 2014) now allow integrating
thousands of floristic data sources under a common taxo-
nomic framework.
Potential uses of DAI in ecology are manifold (Lavoie

2013), spanning from research on diversity patterns (Morueta-
Holme et al. 2013), biological invasions (O’Donnell et al.
2012) or phenological changes (Calinger et al. 2013), to assess-
ments and monitoring of threats (Brummitt et al. 2015), and
conservation decision-making (Ferrier 2002; Guisan et al.
2013). However, broader application is limited by gaps,
uncertainties and biases in each of the three basic dimensions
taxonomy, space and time (Nelson et al. 1990; Sober�on &
Peterson 2004; Boakes et al. 2010; Schmidt-Lebuhn et al.
2013).
At least two major aspects of occurrence information

directly influence opportunities for inference and application
(Fig. 1). One aspect closely connected to the quantity of
records is the coverage of the three dimensions with informa-
tion. For instance, taxonomic coverage, i.e. how many of the
existing species in different assemblages are documented,
determines how reliably biodiversity can be compared across
sites (Funk et al. 1999; Hortal et al. 2007). Geographical cov-
erage, i.e. how well species’ ranges are documented with
records, affects the feasibility and reliability of species distri-
bution modelling (Kadmon et al. 2003; Feeley & Silman
2011). Finally, high temporal coverage, i.e. continuous

recording of species through time, is essential for monitoring
species’ responses to environmental change (Brummitt et al.
2015).
A second, more qualitative aspect of occurrence information

is uncertainty regarding the taxonomic, geographical and tem-
poral information that makes up occurrence records (Fig. 1).
Uncertainties in DAI may have various sources related to pre-
cision, accuracy, ambiguity, credibility or age of information.
For instance, ambiguous scientific names entail uncertainty
regarding taxonomic identities (Jansen & Dengler 2010),
imprecise sampling locations entail uncertainty regarding the
environmental context in which species were found (Rocchini
et al. 2011), and early sampling dates entail uncertainty
regarding their continuing presence at those locations (Boitani
et al. 2011).
Both gaps in information coverage and information uncer-

tainties may be biased in the taxonomic, geographical and
temporal dimensions (Fig. 1), potentially leading to biased
ecological inferences (Prendergast et al. 1983; Hortal et al.
2008) and inefficient conservation (Grand et al. 2007). For
instance, taxonomic coverage of plant assemblages may be
geographically biased to certain regions (Yang et al. 2013;
Sousa-Baena et al. 2014), and geographical uncertainty may be
temporally biased towards older records (Murphey et al.
2004). Other types of ecologically relevant data bias are
typically closely connected to the three basic dimensions, e.g.
phylogenetic or functional biases (Schmidt-Lebuhn et al.
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Figure 1 Framework for analysing limitations in occurrence information along taxonomic, geographical and temporal dimensions. Occurrence records cover

different species (sp1, sp2, . . .), different locations (xy1, xy2, . . .) and different points in time (t1, t2, . . .). Planes of cells illustrate spread of information

between pairs of dimensions, information from anywhere along the third dimension is vertically projected onto the plane. Applicability of occurrence

information depends on: (1) coverage of the three dimensions with information (grey cells), and (2) uncertainty regarding the interpretation of information

on the three dimensions (shade of grey cells). Thus, a cell may be covered, but uncertainty of the records may vary from low (dark grey) to high (light

grey); white cells indicate no coverage with available information. Integrating across cells in one dimension summarises information per unit of the other

dimension (e.g. bottom right: highest geographical coverage at time t5 because four out of six locations covered). Coverage and uncertainty may be biased in

each dimension (curly brackets; e.g. centre left: temporal coverage taxonomically biased because species of taxon4,5,6 have systematically higher coverage,

compared to taxon1,2,3).

© 2016 John Wiley & Sons Ltd/CNRS

Review and Synthesis Multidimensional limitations in occurrence records 993



2013) to taxonomy, environmental bias (Funk et al. 2005) to
space and seasonal bias (ter Steege & Persaud 1991) to time.
Understanding magnitude and biases in different metrics of

coverage and uncertainty of DAI with regard to the three
dimensions is crucial for evaluating prospects for research and
other applications, and for prioritising and monitoring activi-
ties to improve DAI (Meyer et al. 2015; Peterson et al. 2015).
Identifying botanical information gaps has a long history
(J€ager 1976; Prance 1977; Kier et al. 2005), whereas most
recent analyses emphasised effects on specific ecological
applications of DAI (Feeley & Silman 2011; Yang et al. 2013;
Maldonado et al. 2015). Despite the need to evaluate the
multiple limitations in global DAI (Ladle & Hortal 2013), a
quantitative assessment for the world’s plants is lacking.
Here, we provide such an assessment for all land plants, by

integrating 120 million point-occurrence records facilitated via
GBIF with comprehensive taxonomic databases, the World
Checklist of Selected Plant Families, and the IUCN Global
Red List. We examine DAI for gaps in coverage, data uncer-
tainties and their biased variation along taxonomic, geograph-
ical and temporal dimensions, investigate pairwise and
multivariate relationships between different metrics of cover-
age and uncertainty, and characterise geographical regions in
terms of their multivariate data limitations. In light of these
different limitations, we highlight how typical applications of
DAI might be affected, and discuss prospects for using plant
DAI in global ecological research, conservation and monitor-
ing, with particular emphasis on GSPC targets. Finally, we
outline next steps towards more effective information usage
and mobilisation. Our work provides the first quantitative glo-
bal synthesis of strengths and weaknesses in DAI for a hyper-
diverse taxonomic group, and conceptual and empirical
baselines for studying and addressing data limitations in
future research and data mobilisation efforts.

METHODS

Data sources

We downloaded all records for land plants available via GBIF
in January 2014 (c. 120 million). These records were con-
tributed to the GBIF network by 238 data publishers in 48
countries (Table S1). The majority of these records (78%)
came from field observations (e.g. from vegetation plot data)
and from preserved herbarium specimens (17%). GBIF-facili-
tated records represent by far the largest source of DAI, and
a substantial part of the digitised portion of the estimated
350 million records that exist in the World’s herbaria (New
York Botanical Garden 2014). Geographical gaps in global
coverage of these records may represent genuinely under-
sampled regions, but also regions whose information is not
yet digitised or integrated into international data-sharing
networks (Meyer et al. 2015), such as Brazil or China (see
Sousa-Baena et al. (2014) and Yang et al. (2013), respectively,
for limitations in those regional databases).
We taxonomically standardised and validated verbatim sci-

entific names, using comprehensive taxonomic information
provided via The Plant List (TPL 2014) and iPlant’s Taxo-
nomic Name Resolution Service (TNRS 2014). We applied

taxonomic and geographical filters (see section Uncertainty
below) and excluded duplicate combinations of accepted spe-
cies, sampling location and year-month combination (see
Fig. S1 for an overview of our workflow, see Supplementary
Information (SI) 1 for details on standardisation and filter-
ing). These steps led to a reduction of 119 058 280 raw
records with 2 206 831 verbatim name strings to 55 929 317
unique point-occurrence records for 229 218 accepted species
from 3 947 969 unique sampling locations and 3172 year-
month combinations (SI.1.1).
DAI includes both erroneous and non-native species’

records (Sober�on & Peterson 2004), however, independent
baseline information for validation (e.g. on species’ native
ranges) is lacking for most plants (Box 1). Therefore, we vali-
dated 16.8 million records for 105 031 species of seed plants
(Spermatophyta; 34% of all plant species) against checklists
for ‘botanical countries’ (level-3 regions of Biodiversity Infor-
mation Standards, formerly Taxonomic Database Working
Group – TDWG; www.tdwg.org/standards/109/), derived
from the World Checklist of Selected Plant Families (WCSP,
2013). We determined the global conservation status of species
using the International Union for Conservation of Nature’s
Global Red List (IUCN 2014).

A framework for assessing multidimensional data limitations

We developed a conceptual framework for assessing limita-
tions in occurrence information along the three basic dimen-
sions that define primary biodiversity data and characterise
species distributions – taxonomy, space and time (Sober�on &
Peterson 2004). The framework consists of the quantification
of the fundamental aspects of information coverage and uncer-
tainty with regard to the three basic dimensions, and the
assessment of variation and biases of each of the six resulting
information metrics along each of these dimensions (Fig. 1).
We followed this framework, by quantifying the different
information metrics and assessing their variation across taxo-
nomic, geographical and temporal units (see below). Note that
while our framework can guide future assessments, our choice
of indices to quantify the different information metrics is not
prescriptive; depending on the goals of assessments, individual
metrics may warrant more detailed analysis or quantification
through other indices (see Box 1 and SI 2 for challenges and
limitations).

Coverage
We computed three metrics to estimate taxonomic, geographical
and temporal coverage, i.e. the extent to which available records
cover the three basic dimensions (Fig. 1). We estimated taxo-
nomic coverage of 12 100 km² equal area grid cells
(110 km 9 110 km at the equator) as the ratio between
recorded vascular plant richness and an estimate of actual rich-
ness (the co-kriging richness model of Kreft & Jetz (2007)). Sim-
ilar metrics have been variously termed census-, inventory- or
survey completeness (Colwell & Coddington 1994), but we use
taxonomic coverage here for consistency with the general frame-
work (Fig. 1). A general problem in assessing data coverage is
that the very data limitations under study often preclude reli-
able baselines against which data gaps could be tested (see
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Box 1). In this respect, we acknowledge possible uncertainties
in our index arising from the use of the plant-richness model, as
well as continued debate among experts on the best ways for
assessing taxonomic coverage (see SI 2). To address this prob-
lem, we compared our index against two alternative indices of
taxonomic coverage that are estimated from the records them-
selves (SI 2, Fig S2) as well as a more robust, but less detailed
and comprehensive, index derived from species checklists for
selected plant families in botanical countries (WCSP 2013; Fig
S4). As a complementary measure that emphasises the magni-
tude of total rather than proportional gaps in taxonomic cover-
age, we assessed the number of vascular plant species that were
not recorded but expected to occur in a grid cell based on the
richness model of Kreft & Jetz (2007).
To estimate geographical coverage of species’ ranges and

grid cells, respectively, we used the quantity of unique sam-
pling locations per species and per grid cell land area (see
Box 1 for limitations of this approach). To measure temporal
coverage of species and of grid cells, we calculated the nega-
tive mean minimum time (in years) from all months between
1750 and 2010 to their respective temporally closest records
available for that species or cell, respectively. This metric

indicates the number of years that typically lie between a
given point in time and the temporally nearest date when
records were collected; it has large negative values if temporal
coverage is low, i.e. if the entire time span contains large tem-
poral gaps without any records. As a complementary measure
that emphasises the magnitude of the most recent data gap,
we assessed the time since the last records were collected for a
given species or grid cell. We analysed temporal patterns of
taxonomic and geographical coverage by comparing percent-
ages of species and grid cells covered within, and cumulatively
up to, 5-year periods.

Uncertainty
Uncertainty in DAI (Fig. 1) has multiple sources, including
imprecise or inaccurate information (Murphey et al. 2004;
Rocchini et al. 2011), uncertain status of species or ambigu-
ous synonymy (Berendsohn 1995), and decay of information
in space and over time (Ladle & Hortal 2013). Here, we
focused on sources of uncertainty in reported information
that can be readily assessed using available databases and
tools (for data inaccuracies such as species misidentifications,
which are not assessed here, see Box 1). To investigate

Box 1 Inaccurate information, missing baselines and alien species

A number of fundamental issues in point-occurrence information compromise the study of data limitations as well as applica-
tions of DAI in research and conservation. A detailed assessment of these issues is beyond the scope of this study, but anyone
using DAI should carefully consider these potential sources of error.
Information Inaccuracies: A potentially huge problem that is particularly difficult to address is information that is taxonomi-

cally or geographically inaccurate. It is largely unknown how often species were misidentified (Scott & Hallam 2002), how often
direction and distance to known reference points were mismeasured or coordinates incorrectly recorded from GPS receivers
(Murphey et al. 2004), and how often originally accurate information was subsequently rendered inaccurate during data cura-
tion, digitisation or mobilisation. Case studies found species misidentification rates between < 1 and 17% (Bisang & Urmi 1994;
Scott & Hallam 2002; Ahrends et al. 2011). For large databases, taxonomic inaccuracies may be impossible to detect or reliably
estimate without extremely labour-intensive reassessments of the original material and sufficiently rich metadata (e.g. on the
experience of the identifying person), which, however, do not exist for most datasets. Similarly, only the most obvious geo-
graphical inaccuracies are likely to be detected. For example, apparent peaks in taxonomic coverage near country centroids
likely reflect cases where indicated countries were later inaccurately geo-referenced to precise point localities (e.g. in Brazil;
Fig 2b; compare Murphey et al. 2004; Maldonado et al. 2015). As another example, data-housing institutions or botanical gar-
dens are sometimes inaccurately reported as ‘natural’ sampling locations, as seen in undated collections of hundreds of non-Eur-
opean species provided by the Bergius Herbarium (note the taxonomic coverage peak of 6.6 around Stockholm; Fig. 2b).
Missing Baselines: A further key problem for analysing data limitations is that the very subject of analysis often precludes

reliable baselines against which limitations can be tested. For instance, our metric of taxonomic coverage will underestimate gaps
for any localised plant diversity centre that may not be well-represented by the underlying plant-richness model. Species richness
estimators (e.g. Chao & Jost 2012) are in turn highly sensitive to low record numbers and to non-natural relative abundances of
species in natural history collections (ter Steege et al. 2011; SI 2, Fig. S2). Similarly, due to prevalent gaps and biases, it is
rarely possible to reliably assess the geographical coverage of species’ ranges, as meaningful distribution estimates for
comparison are neither available nor feasible for the majority of species. Avoiding this problem by restricting assessments to
well-known study systems naturally entails trade-offs for detail and comprehensiveness. Moreover, even the most authoritative
baseline information is ultimately based on primary biodiversity records, and may thus change as new evidence becomes avail-
able (SI 2; Fig. S4a–b).
Alien Species: Finally, DAI includes an unknown quantity of valid occurrence records of species outside their native ranges.

These records can play a crucial role in informing about the first occurrence and subsequent spatio-temporal spread of aliens in
their invaded ranges, and thus facilitate the study and management of plant invasions (GSPC target 10; Broennimann et al.
2007; van Kleunen et al. 2015). However, if their alien status is undetected, these records can bias inferences concerning native
biota, such as about the number of records usable for distribution estimations (Fig. 2d), or about the completeness of native
plant inventories (note the higher-than-expected recorded richness in 3.6% of cells; Fig. 2b; also see Fig. S4c).
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uncertainty in DAI, we imposed increasingly stringent filters
on records (basic, moderate and strict; described below) and
investigated the impacts of these filters on numbers of
retained records or species.
We defined three taxonomic uncertainty filters based on

expert confidence, precision and ambiguity of scientific names,
which we assessed during our taxonomic validation procedure
(see SI 1):

(1) TaxStrict: Recorded name matches a species that TPL
considers accepted with high expert confidence (three ‘stars’;
see www.theplantlist.org/about), with ≤ 5% orthographic dis-
tance (the number of changes that have to be applied to one
string to match another; see SI 1), either directly or through
an unambiguous synonym (one that only links to one accepted
species);
(2) TaxModerate: Recorded name matches a species that
TPL considers accepted with high or medium expert confi-
dence (two or three ‘stars’) with ≤ 15% orthographic distance,
either directly or through an unambiguous or ambiguous
synonym;
(3) TaxBasic: Recorded name matches a species that TPL or
TNRS considers accepted (no criteria for expert confidence in
TPL) with ≤ 25% orthographic distance, either directly or
through an unambiguous or ambiguous synonym. This basic
filter was always applied before other analyses.

We defined three geographical uncertainty filters, based on
precision of coordinates and internal consistency with the
indicated country (for inaccuracies such as measurement
errors, see Box 1):

(1) GeoStrict: Location reported with a precision of at least
1/1000 of a degree (� 100 m at the equator);
(2) GeoModerate: Location reported with a precision of at
least 1/100 of a degree;
(3) GeoBasic: Location reported with a precision of at least
1/10 of a degree and falling within the indicated country. This
filter was always applied before other analyses.

We defined three temporal uncertainty filters based on the
principle that information quality decays with time (Boitani
et al. 2011; Ladle & Hortal 2013):

(1) TempStrict: Records collected after 1990;
(2) TempModerate: Records collected after 1970;
(3) TempBasic: Records collected after 1950.

Unless stated otherwise, we hereafter refer to a dataset to
which basic taxonomic and geographical filters, but no tem-
poral filter, were applied. We investigated patterns in taxo-
nomic and geographical uncertainty by comparing across
species and grid cells the percentages of excluded records
when additionally applying moderate or strict taxonomic
and geographical uncertainty filters respectively. We investi-
gated patterns in temporal uncertainty by comparing per-
centages of excluded species when additionally applying
moderate or strict temporal uncertainty filters. Similarly, we
investigated patterns in combined uncertainty by comparing
percentages of additionally excluded species if all three
moderate or strict filters (taxonomic, geographical and tem-
poral) were applied.

Variation in occurrence information
To quantify and visualise taxonomic, geographical and tempo-
ral variation and biases in information coverage and uncer-
tainty, we compared the respective metrics among major plant
groups (bryophytes, pteridophytes, gymnosperms and angios-
perms), geographical units (12 100 km² grid cells and TDWG
level-3 ‘botanical countries’) and 5-year periods. We defined
bias as the non-random distribution of magnitude and/or
prevalence of any data limitation (i.e. any metric of coverage
or uncertainty) along a specified dimension. This definition
corresponds to systematic error (Walther & Moore 2005),
such as unrecorded species (i.e. low taxonomic coverage) or im-
precise coordinates (i.e. high geographical uncertainty). For
instance, we speak of ‘geographical bias in taxonomic cover-
age’ if gaps in species inventories are non-randomly dis-
tributed across spatial grid cells.
To test for taxonomic bias in information metrics, we com-

pared mean species values of our information metrics among
major plant groups using Tukey contrasts (Herberich et al.
2010). We quantified spatial bias using Moran’s I, a com-
monly used spatial autocorrelation measure (Legendre &
Legendre 2012), and temporal bias using lag-k correlations
(ACFmax; Legendre & Legendre 2012). We assessed spatial
and temporal autocorrelation over five spatial and temporal
distance classes, respectively, and report the highest values.
Spatial and temporal autocorrelation measures are not
directly comparable, but in both cases, values approaching 0
mean that the information metric is even or random (i.e.
unbiased) with regard to that dimension; values approaching
1 indicate highly biased information.

Relationships among information metrics
We investigated relationships between geographical patterns
of nine different information metrics, including the three
dimensions of coverage and uncertainty, combined uncertainty
(see above; uncertainty measured here as information loss
under moderate filtering), the number of missing vascular
plant species, and the time since the last record was collected.
We analysed pairwise and multivariate relationships between
these nine metrics using pairwise Spearman rank correlations
and principal component analysis (PCA) which reduces co-lin-
ear metrics to orthogonal principal components. We assigned
red, green and blue components of the RGB colour space to
the grid cells according to their positions in the three-dimen-
sional space formed by the first three PCA axes (Weigelt et al.
2013). We then mapped these coloured grid cells to visualise
which regions are characterised by the different aspects and
dimensions of occurrence information. P-values for correla-
tions between spatial patterns were adjusted to geographically
effective degrees of freedom following Dutilleul (1993).
We assessed trade-offs between information coverage and

certainty of DAI, and their implications for potential ecologi-
cal and conservation applications, by counting species that
would meet minimum data requirements of hypothetical dis-
tribution estimation methods (10–200 records; Kadmon et al.
2003; Rivers et al. 2011), if all three basic, moderate or strict
uncertainty filters were applied. We performed these analyses
globally and for TDWG level-1 continents, assigning species
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to continents if ≥ 80% of their records fell within their respec-
tive boundaries. All analyses were carried out in R versions
3.0.2–3.2.1 (R Core Team 2014).

RESULTS AND DISCUSSION

The large volume of plant records in global DAI (119 million;
Fig. S1a) may misguide perceptions of the actual available
information on plant occurrences. Our basic validation and
filtering steps excluded 38.2 million records, including
12.5 million with non-validatable verbatim name strings
(Fig. S1g, SI 1) and 27.9 million in the sea (Fig. S1c). Collect-
ing duplicate specimens from the same plant individual is
common practice in botany, and removing duplicated species-
location-month combinations excluded a further 25 million
records, leaving 56 million unique records for analyses (47%
of all). The record number per species varied by five orders of
magnitude, and by six orders of magnitude across grid cells
(Fig. S1b). For instance, a single 12 100 km² cell in the
Netherlands that is home to 38 data-contributing institutions
and one of the world’s largest vegetation plot datasets had
2.8 million records, whereas 21% of all cells had no records.
All metrics assessed were severely biased in at least one of the
three dimensions.

Coverage of the different dimensions

Taxonomic coverage
Globally, DAI on plant occurrences showed tremendous gaps
in taxonomic coverage, with only about two-thirds of all plant
species covered with at least one record that passed our basic
filtering (229 218 out of 350 697 species accepted by TPL as
of 2014). Taxonomic coverage was itself taxonomically biased,
with 83% of pteridophytes but only 28% of bryophyte species
represented (Fig. 2a). For most regions, taxonomic coverage
of species assemblages was extremely low: 79% of cells had
< 25% of species covered. Spatial autocorrelation furthermore
demonstrated considerable geographical bias (Moran’s
I = 0.60, P = 0; Fig. 2b). These gaps and biases seriously
impair important applications, from basic ecological studies
(Yang et al. 2013) to site-based plant conservation prioritisa-
tion (GSPC target 5; Funk et al. 1999).
Recorded species richness was an almost perfect function of

record number (rS = 0.94, PDut = 0; Fig. S1b/f/k), demonstrat-
ing that centres of plant diversity perceived from occurrence
records often reflect better documentation rather than true
diversity patterns (Hortal et al. 2007; Yang et al. 2013; also
compare SI 2, Fig S2c). Although absolute numbers of
unrecorded species were highest in the tropics (e.g. Eastern
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Amazonia, Borneo; Fig. S3a), patterns of proportional taxo-
nomic coverage did not confirm previous observations of a
‘tropical data gap’ (Collen et al. 2008; PDut = 0.37), nor of
higher data gaps in Neo- than in Palaeotropical areas (Prance
1977; PDut = 0.64). Instead, severe gaps emerged across most
of Asia, Northern and Central Africa, Amazonia and Arctic
Canada (Fig. 2a). Despite limitations in our index of taxo-
nomic coverage (and in indices of other information metrics;
see Box 1), these broad-scale patterns are largely robust
against alternative indices (SI 2, Fig S2), and provide an
important first step in identifying priority regions for improv-
ing botanical baseline information (GSPC target 3; Sousa-
Baena et al. 2014).

Geographical coverage
One of the most prominent applications of point-occurrence
records in ecology is the estimation of species distributions.
However, available records typically covered individual plant
species at only seven unique locations (median across species
with ≥ 1 record; Fig. 2d), too few to construct meaningful
species distribution models (Guisan et al. 2007; Feeley & Sil-
man 2011) or extent-of-occurrence range maps (Gaston &
Fuller 2009; Rivers et al. 2011). Our geographical coverage
index showcased a significant taxonomic bias (Fig 2d), as well
as a geographical bias, mainly towards well-studied North
America, Western Europe and Australia (Fig. 2e). Outside
those regions, high geographical coverage often appeared asso-
ciated with specific botanical interest and major research and
data mobilisation programs. For instance, Madagascar has
exceptional plant diversity and endemism (> 11 000 species,
82% endemic; Callmander 2011). Missouri Botanical Garden
has long focused on the botanical exploration of Madagascar
(Raven & Axelrod 1974), was one of the first institutions to
engage in data mobilisation (Crosby & Magill 1988), and as a
consequence now contributes 66% of Madagascan records.

Temporal coverage
Continuous temporal coverage of species and regions is neces-
sary for monitoring changes in biodiversity (Boakes et al.
2010) and to provide historical baselines (Willis et al. 2007).
Given the general paucity of long-term datasets in ecology,
identifying continuities in existing DAI may uncover vantage
points for future monitoring activities (Johnson et al. 2011).
Most species had extremely low temporal coverage since 1750,
with a given point in time typically decades away from the
nearest record (median: 77.3 years; Fig. 2g). In addition, tem-
poral coverage was geographically highly biased (Moran’s
I = 0.40, P = 0), with less than 2 months typically lying
between a given point in time and the closest sampling date in
the best-covered cell in eastern England, in contrast to
73 years for Amazonia and Asia (medians; Fig. 2h). For
many global change questions, such as monitoring of pole-
ward range expansions or land-use driven range contractions
(Feeley 2012), temporal coverage specifically of recent decades
may be most relevant and coverage since 1950 was indeed
higher (Fig. S3b–c). Worryingly, however, several tropical and
high arctic regions undergoing very rapid land-cover or cli-
mate change (Burrows et al. 2011; Hansen et al. 2013) were
characterised both by poor temporal coverage and ageing

records, notably in Canada, central Africa and Asia
(Fig. S3c–d). For instance the last record in a given Angolan
grid cell was typically collected 36 years ago (median, mea-
sured from 2010).

Temporal variation in coverage
Globally, coverage of species and grid cells mostly increased
through time, apart from dips during the World Wars
(Fig. 2c/f). Geographical coverage appears to have levelled off
since the 1970s and taxonomic coverage since the 1980s,
whereas cumulative coverage continued to increase at lower
rates (Fig. 3e–f). The steep drops in global coverage since the
mid-1990s may partly reflect time lags between field collection
and mobilisation of records (Gaiji et al. 2013), but also
decreasing survey effort (Prather et al. 2004). The latter would
be alarming, as new, up-to-date records are crucial both for
studying recent environmental change and for securing the
data foundations of botanical research in coming decades
(Johnson et al. 2011). These general trends in global coverage
hide strong spatio-temporal variation in certain regions
(Fig. S5).

Uncertainty regarding the interpretation of information

Uncertainties in point-occurrence information increase the
likelihood that available records are misinterpreted, such as
when ambiguous synonyms link records to false accepted spe-
cies, or when imprecise coordinates link them to the false
environmental conditions. Compared to mere gaps in infor-
mation coverage, misinterpretations are even doubly harmful,
as false records are added and true records are ignored.
Unlike aspects of coverage (e.g. Yang et al. 2013; Sousa-
Baena et al. 2014; Meyer et al. 2015), uncertainties in DAI
have received relatively little attention (e.g. Feeley & Silman
2010; Ahrends et al. 2011).

Taxonomic uncertainty
Taxonomic uncertainty regarding interpretations of scientific
names can arise from missing clarity on whether names are
accepted or synonyms, from ambiguous synonyms linked to
several accepted names, or from orthographic variations and
spelling mistakes (Berendsohn 1995; Jansen & Dengler 2010;
see Box 1 for additional uncertainties due to species misidenti-
fications). We found extremely high rates of taxonomically
uncertain information in global plant DAI, as showcased by
the 67% of information that was lost when applying our strict
taxonomic filter.
The proportion of records with taxonomically uncertain

information was taxonomically and geographically highly
biased. For instance, pteridophytes disproportionately lost
records under moderate filtering (Fig. 3i), possibly reflecting
continuing major changes in fern taxonomy (Christenhusz &
Chase 2014). Furthermore, different degrees of uncertainty
showed very different geographical biases: Depending on the
strictness of taxonomic filtering, geographical peaks in lost
information appeared either in insular South-East Asia (mod-
erate filter, Fig. 3a) or in Europe and North America (strict
filter, Fig. 3b). High taxonomic uncertainty for the latter
regions might appear counterintuitive, given their long history
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of intensive taxonomic work. However, precisely this work
has resulted in many taxonomic revisions, which, despite their
obvious benefits, increased taxonomic uncertainties, as
intended taxonomic delimitations of ambiguous species names
usually cannot be inferred for most of the disparate data
sources that make up DAI. Potentially, any DAI-based appli-
cation for species with ambiguous names (e.g. that were his-
torically used for broader species concepts) could thus be
biased, as inferences may be partly based on records for
related species that were historically lumped together (Berend-
sohn 1995).

Geographical uncertainty
Imprecisely geo-referenced sampling locations lead to uncer-
tainty regarding the geographical and environmental context

of species’ occurrences. Such geographical uncertainty is wide-
spread in global DAI: Applying our basic geographical filter
already lead to a 38% loss in accepted species from our data
set, confirming a strong trade-off between geographical preci-
sion and taxonomic coverage of information (Feeley & Silman
2010).
The prevalence of geographical uncertainties was highly

biased in space (Fig 3c–d, Moran’s I = 0.24–0.44, P = 0) and
time (Fig 3j, ACFmax = 0.70–0.73). Imprecisely geo-referenced
locations were most prevalent in tropical and remote non-tropi-
cal regions (e.g. Alaska, temperate Asia, Western Australia;
Fig. 3d), likely due to lower quality maps and more sparsely
distributed settlements, which frequently serve as geographical
references during surveys. Analogously, geographical uncer-
tainty increased during two major periods that saw intensive
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explorations of tropical and remote regions, first during the sec-
ond wave of European colonial expansion, 1860–1910, and
again between 1940 and 1965 (Fig. 3j; Fig. S5b–d; Fig. 3c–d).
The subsequent decrease in geographical uncertainty may reflect
the increasing availability of better maps and, later, GPS tech-
nology. However, geographical uncertainty can also be gener-
ated during data mobilisation. For instance, patterns in
Australia closely mirrored administrative boundaries, reflecting
different mobilisation policies of Australian state departments,
which contributed 54% of Australian records (Fig. 3c). At the
time of downloading our records, several Australian datasets
were mobilised into the GBIF network via intermediaries that
deliberately generalised location coordinates of any potentially
sensitive information. Mobilisation pathways since changed
and generalisations are now restricted to much lower percent-
ages of Australian records (e.g. of species threatened by illegal
collecting; Klazenga & Vaughan 2014).
The overall high levels of geographical uncertainty severely

compromise applications like distribution modelling, that rely
on linking species occurrences with fine-scale environmental
data for extrapolation (Feeley & Silman 2010; Rocchini et al.
2011). This problem is aggravated in environmentally hetero-
geneous regions, where even slight errors would substantially
alter the perceived environmental associations of species (Fee-
ley & Silman 2010; e.g. note the high uncertainty in the tropi-
cal Andes; Fig. 3c–d). In this context, we shall stress that
even precisely reported information cannot assure that loca-
tions are in fact accurate (see discussion in Box 1). Neverthe-
less, such precision-based assessments can offer a starting
point for focusing additional geo-referencing activities.

Temporal uncertainty
Despite the importance of early collected records for inform-
ing about past biota, old records also inherit greater temporal
uncertainty regarding the continuing presence of species at or
near sampling locations (Sober�on & Peterson 2004; Boitani
et al. 2011), as distributions may have responded to land-use
and climatic changes (Thuiller et al. 2008) or biological pro-
cesses (Schurr et al. 2012). Therefore, important applications
like conservation planning or distribution modelling, that link
DAI with modern habitat data, usually require similarly mod-
ern occurrence information (Boitani et al. 2011). Sufficiently
modern information for such applications was, however,
extremely scarce for most taxa and regions. On average, 62%
of species in a given grid cell had no record collected after
1990, 32% even had no record from after 1970 (Fig. 3e–f).
Particularly high uncertainty levels emerged for much of Arc-
tic Canada, central Africa, Iraq, eastern India, Myanmar and
Java (Fig. 3e). Apart from continuously well-sampled areas
like north-western Europe, only regions that only saw inten-
sive surveying during recent decades appeared as having gen-
erally low temporal uncertainty (e.g. Benin, Indochina, the
circum-Tibetan mountains; Fig. 3f, Fig. S5f).

Combined uncertainty
Nearly all plant records are subject to some form of data
uncertainty (Fig. 3g). Thus, minimising uncertainty in all three
dimensions by combining taxonomic, geographical and tem-
poral filters would lead to substantial trade-offs for coverage

(compare Feeley & Silman 2010; Boitani et al. 2011). Of all
species in our dataset, 79% had no record that passed all
strict filters; 52% even had no record passing all moderate fil-
ters. North-western Europe was the only larger region where
typically ≥ 80% of species in a given grid cell had at least one
record that passed moderate combined filters (Fig. 3g). No
region retained much of available information under strict
combined filtering; even regions where 20% of recorded spe-
cies would withstand such filters were confined to Benin,
Indochina and central and south-eastern Australia (Fig. 3h).
Given these pervasive levels of data uncertainty, it is highly

likely that species identities and their environmental associa-
tions are frequently misinterpreted in ecological studies (Fee-
ley & Silman 2010; Jansen & Dengler 2010). Furthermore, our
documented patterns of uncertainty demonstrate that the like-
lihood of such misinterpretations is biased to particular taxo-
nomic groups, geographical regions and time periods. Overall,
these issues seriously hamper opportunities for ecological
inference and application, and need to be carefully accounted
for whenever records of variable or unknown quality are used
in biodiversity analyses (Rocchini et al. 2011). Furthermore,
results from past studies should be rigorously scrutinised and
ecological insights critically re-evaluated, as uncertainties
around estimates may have been grossly underestimated and
many conclusions may ultimately not be supported by avail-
able data.

Relationships between different aspects of occurrence information

In addition to some obviously diverging patterns of individual
information metrics (Fig. 2 and 3), we found clear quantita-
tive evidence for a multidimensionality of limitations in DAI.
Different metrics showed clearly distinct patterns and pre-
dominantly characterise different parts of the world.
Pairwise Spearman rank correlations across nine metrics of

occurrence information varied strongly but mostly yielded
weak to moderate spatial associations (ǀrSǀ = 0.00–0.86,
median = 0.23; Fig. S6). Some coverage metrics were moder-
ately to strongly correlated (rS = 0.63–0.86), mainly because
coverage of any dimension is constrained by the number of
available records (correlations with record number: rS = 0.65–
0.92; compare Yang et al. 2013). Taxonomic and geographical
coverage were also moderately and negatively correlated with
time since the last recording activities (rS: �0.67 to �0.70). In
contrast, most uncertainty metrics showed no or only weak
correlations, with only temporal and combined uncertainty
being highly correlated (rS = 0.75). Notably, most metrics
correlated poorly with quantities of mobilised raw records
(Fig. S6), providing evidence that such simplistic indicators
cannot reliably inform about different quantitative and quali-
tative aspects of occurrence information.
The first three axes of the PCA of the nine metrics

accounted for 69.8% of their variation (Fig. 4). Plotting ordi-
nation site scores on a world map characterised regions in
terms of their multidimensional data limitations (Fig. 4d).
The most important axis (38%) mainly separated regions of
high taxonomic and geographical coverage, e.g. in Europe
(rS = 0.86/0.85; bright green cells in Fig. 4a–b/d), from
regions where a long time has passed since the last recording
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activities, e.g. in Central Africa and South Asia (rS = �0.85;
yellow cells in Fig. 4a–b/d). The second axis (20% of vari-
ance) mainly correlated with combined and temporal uncer-
tainty (rS = 0.74/0.75; Fig. 4a/c/d), highlighting, e.g. Arctic
Canada. Combined uncertainty also characterised much of
Asia, such as the Altai or the mountain ranges between East-
ern Tibet and Sichuan (Fig. 4d). Taxonomic and geographical
uncertainty varied mainly along the third axis (11.8% of vari-
ance; rS: 0.69/0.47; Fig. 4b–c), characterising, e.g. Borneo.
Overall, the results of our study highlight the differences,

rather than the similarities, between geographical patterns
of different aspects and dimensions of occurrence informa-
tion. Different limitations predominate in different regions.
Similar differences can be expected among taxonomic and
temporal patterns of the different information metrics. For
instance, pteridophytes stood out for their high taxonomic
coverage but also showed the highest levels of taxonomic
uncertainty. This multidimensionality of limitations in DAI
deserves careful attention in research and conservation
applications, as well as in future efforts to assess and
improve information.

Prospects for using DAI in global plant research, conservation and

monitoring

Despite the showcased limitations in DAI, there is an urgent
need to use this information in plant research and conserva-
tion. For instance, DAI-based estimates of distributions
(extent of occurrence or area of occupancy) will play a vital
role in conservation assessments (GSPC target 2; Schatz 2009;
Rivers et al. 2011), threatened species management (GSPC
target 7; McLane & Aitken 2012) and monitoring (Brummitt
et al. 2015). As shown below, the potential for such applica-
tions largely depends on the ability of distribution estimation
methods to deal with low record numbers and high data
uncertainty.
If useful species distribution estimates could be made based

on 10 sampling locations (Rivers et al. 2011) and estimation
methods were robust towards relatively high data uncertainty,
DAI could currently facilitate distribution estimates and thus
preliminary conservation assessments for 85 787 non-red-listed
or ‘Data-Deficient’ species globally (c. 25% of all plants;
Fig. 5). This represents a potential seven-fold increase
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compared to the IUCN Red List (i.e. ignoring national red
lists; as of Aug 2014). However, this number would drop to
only 865 or 0.2% for uncertainty-sensitive methods requiring
≥ 200 locations (Feeley & Silman 2011). Similarly, depending
on methods’ data requirements, distribution estimates might
be feasible for 0.07–15.7% of ‘Threatened’ plants, and for
0.03–6.6% of all plants for each of three twenty-year periods
since 1950. While these figures do demonstrate considerable
potential for DAI applications, this potential is geographically
highly uneven (Fig. 5). For instance, DAI-based monitoring
of distributional changes since 1950 might be feasible for
48-3682 European but only 0-26 Pacific plant species (Fig. 5).
Most distribution modelling methods are highly sensitive to

both number and quality of records (Guisan et al. 2007), yet
few and uncertain records are the reality for the vast majority
of plant species. While restricting analyses to highest-quality
records is often recommended (Feeley & Silman 2010), cut-
offs are usually arbitrary, and strict filters wipe out most
available information (Fig. 4h, Fig. 5). Moreover, different fil-
ters may introduce different biases to already-biased datasets
(Fig. 4). More effective usage of DAI would be to explicitly
incorporate biases and uncertainties into analyses. Methods
for doing so are increasingly available (McInerny & Purves
2011; Beale & Lennon 2012; Dorazio 2014; Vel�asquez-Tibat�a
et al. 2015), and further developing such methods holds great

potential for advancing global plant research and conserva-
tion. Hierarchical Bayesian methods might be particularly
well-suited (Beale & Lennon 2012; Iknayan et al. 2014). Theo-
retically, uncertainty of each record could be accounted for
individually, e.g. by sampling possible interpretations of
ambiguous synonyms from distributions of candidate accepted
species, and by sampling possible interpretations of imprecise
coordinates from distributions of potentially true locations
around the indicated coordinates.
Taxonomic standardisation and basic geographical plausi-

bility checks, as carried out in this study, are an essential part
of any analysis using DAI (Chapman 2005). However, even
thorough post-processing cannot fully eliminate information
inaccuracies such as taxonomic misidentifications or incor-
rectly recorded sampling locations (Sober�on & Peterson 2004),
as these usually cannot be detected in DAI (Box 1). Sampled
taxonomic re-assessments of original material (Scott & Hal-
lam 2002; Ahrends et al. 2011) and sampled ground-truthing
of occurrences (Miller et al. 2007) could provide vital infor-
mation on typical rates of such errors for different taxa,
regions and data sources. If additionally, the reporting and
curating of appropriate metadata could be improved, the
combined information could be used to explicitly model the
likelihood of data inaccuracies, which could additionally be
accounted for in biodiversity models.
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Our analyses demonstrate that after two decades of inten-
sive data mobilisation, options for using plant DAI in global
research and conservation are still severely compromised by
different data limitations. Even under our most optimistic sce-
nario regarding methods’ data requirements and robustness to
uncertainty, DAI-based distribution estimations would be
unfeasible for three quarters of all plants. Better integration
of regional data sources into global DAI could provide some
remedy, but these sources exhibit similar limitations (Yang
et al. 2013; Sousa-Baena et al. 2014). The multidimensionality
of data limitations also implies flaws in the accuracy of
distribution datasets that are ultimately derived from primary
biodiversity records, such as checklists, range maps and atlas
data. This is exemplified by the many WCSP-listed species
that are recorded in regions immediately adjacent to their sup-
posedly correct native ranges, which may very well represent
valid additions to those regions’ native floras (Fig. S4b).
Botanical inventorying will never be complete and severe data
gaps will likely persist for decades to come, as evident in slow
progress towards regional and global floras (GSPC target 1;
Paton 2013). Meeting GSPC targets on plant conservation
seems unlikely without substantial increases in funding and
personnel allocated to data collection, curation and mobilisa-
tion. Given difficulties in securing adequate and sustained
financing for such activities (Vollmar et al. 2010; Bradley
et al. 2014; Costello et al. 2014), efforts to improve DAI
should be globally coordinated and prioritised (Meyer et al.
2015).

Towards more effective improvement of DAI

Our analyses provide an important first step towards priori-
tising efforts to enhance global DAI on plant occurrences.
Distinguishing between metrics of information coverage and
uncertainty in taxonomic, geographical and temporal dimen-
sions allows narrowing down critical improvements. For
instance high taxonomic uncertainty in South-East Asian
and pteridophyte floras may be addressed by targeted taxo-
nomic revisions and better integration of taxonomic
resources into The Plant List. New surveys to update infor-
mation seem most urgently needed for Central Africa,
Mozambique, tropical Asia and Arctic Canada. In general,
Asian and bryophyte floras are woefully under-represented
in DAI, and mobilising respective occurrence datasets seems
like an obvious priority. To maximise leverage for applica-
bility in research and conservation, such preliminary priori-
ties could be further refined, by considering, e.g. current or
projected threats (Pyke & Ehrlich 2010), geographical and
environmental distance to well-sampled regions (Funk et al.
2005; Sousa-Baena et al. 2014), and opportunities for con-
tinuing or closing gaps in long time series (Johnson et al.
2011). Relevant collections for such targeted data mobilisa-
tion may be identified through metadata digitisation
(Berendsohn & Seltmann 2010), while identifying socio-eco-
nomic drivers of information gaps can help prioritise key
activities likely to have a large impact (Yang et al. 2014;
Meyer et al. 2015). Specialised biodiversity informatics
infrastructures (e.g. Jetz et al. 2012; Atlas of Living Aus-
tralia 2015) could play an important role in highlighting

and tracking the various data limitations. Our conceptual
framework for analysing quantitative and qualitative data
limitations along different dimensions may serve as a model
for future assessments for plants as well as for other hyper-
diverse clades.
The multidimensional and largely un-correlated limitations

in DAI also raise the question of how to effectively monitor
progress towards international targets on improving and shar-
ing biodiversity knowledge (GSPC target 3, Aichi target 19).
Simplistic indicators like global or per-country record quanti-
ties (e.g. Tittensor et al. 2014) cannot inform about data
uncertainties or fine-scale biases in coverage. To monitor
improvements in the usefulness of DAI, rather than mere
increases in data volume, we recommend evaluating a suite of
indicators that inform about both quantitative and qualitative
aspects of DAI at relevant scales.

CONCLUSIONS

As demonstrated, severe multidimensional biases, gaps and
uncertainties are prevalent in global DAI on plant occur-
rences, hampering opportunities for using this information in
global biodiversity research and for achieving international
targets on plant conservation. Either goal would require
both substantial up-scaling and prioritisation of efforts to
collect and mobilise additional, and enhance the quality of
available, occurrence information. Progress in improving
DAI should be monitored using meaningful indicators. How-
ever, it should be stressed that severe data limitations will
remain the norm for most species and regions. Greater effort
should therefore be made to make best-possible use of lim-
ited information. This includes developing easy-to-use routi-
nes for explicitly incorporating data limitations into analyses,
more widely adopting such methods, and clearly articulating
remaining uncertainties.
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